If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying int((-2xy2) + -3y) * dx + ((-2x2) * y + -3x) * dy = 0 Reorder the terms for easier multiplication: int * dx((-2xy2) + -3y) + ((-2x2) * y + -3x) * dy = 0 Multiply int * dx dintx((-2xy2) + -3y) + ((-2x2) * y + -3x) * dy = 0 ((-2xy2) * dintx + -3y * dintx) + ((-2x2) * y + -3x) * dy = 0 Reorder the terms: (-3dintxy + -2dintx2y2) + ((-2x2) * y + -3x) * dy = 0 (-3dintxy + -2dintx2y2) + ((-2x2) * y + -3x) * dy = 0 Remove parenthesis around (-2x2) -3dintxy + -2dintx2y2 + (-2x2 * y + -3x) * dy = 0 Multiply x2 * y -3dintxy + -2dintx2y2 + (-2x2y + -3x) * dy = 0 Reorder the terms: -3dintxy + -2dintx2y2 + (-3x + -2x2y) * dy = 0 Reorder the terms for easier multiplication: -3dintxy + -2dintx2y2 + dy(-3x + -2x2y) = 0 -3dintxy + -2dintx2y2 + (-3x * dy + -2x2y * dy) = 0 -3dintxy + -2dintx2y2 + (-3dxy + -2dx2y2) = 0 Solving -3dintxy + -2dintx2y2 + -3dxy + -2dx2y2 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Factor out the Greatest Common Factor (GCF), '-1dxy'. -1dxy(3int + 2intxy + 3 + 2xy) = 0 Ignore the factor -1.Subproblem 1
Set the factor 'dxy' equal to zero and attempt to solve: Simplifying dxy = 0 Solving dxy = 0 Move all terms containing d to the left, all other terms to the right. Simplifying dxy = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Subproblem 2
Set the factor '(3int + 2intxy + 3 + 2xy)' equal to zero and attempt to solve: Simplifying 3int + 2intxy + 3 + 2xy = 0 Reorder the terms: 3 + 3int + 2intxy + 2xy = 0 Solving 3 + 3int + 2intxy + 2xy = 0 Move all terms containing d to the left, all other terms to the right. Add '-3' to each side of the equation. 3 + 3int + 2intxy + -3 + 2xy = 0 + -3 Reorder the terms: 3 + -3 + 3int + 2intxy + 2xy = 0 + -3 Combine like terms: 3 + -3 = 0 0 + 3int + 2intxy + 2xy = 0 + -3 3int + 2intxy + 2xy = 0 + -3 Combine like terms: 0 + -3 = -3 3int + 2intxy + 2xy = -3 Add '-3int' to each side of the equation. 3int + 2intxy + -3int + 2xy = -3 + -3int Reorder the terms: 3int + -3int + 2intxy + 2xy = -3 + -3int Combine like terms: 3int + -3int = 0 0 + 2intxy + 2xy = -3 + -3int 2intxy + 2xy = -3 + -3int Add '-2intxy' to each side of the equation. 2intxy + -2intxy + 2xy = -3 + -3int + -2intxy Combine like terms: 2intxy + -2intxy = 0 0 + 2xy = -3 + -3int + -2intxy 2xy = -3 + -3int + -2intxy Add '-2xy' to each side of the equation. 2xy + -2xy = -3 + -3int + -2intxy + -2xy Combine like terms: 2xy + -2xy = 0 0 = -3 + -3int + -2intxy + -2xy Simplifying 0 = -3 + -3int + -2intxy + -2xy The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| K(x)=2-10x-100 | | x=0.5x+0.2x+250+(10+50) | | 9+10y=5 | | 3x+3+5x=59 | | (X+12)6-90= | | g(x)=3x^2+2x+13 | | -2q+2(p+1)(1-q)+2(q-p)=(1-q)(p+2)-p(q-1)+15 | | 6+17x=-15+-14x | | 2(p+1)(1-q)+2(q-p)=(1-q)(p+2)-p(q-1)+15 | | 2(p+1)(1-q)+2(q-p)=(1-q)(p+2) | | 10nm=40 | | 8x+72=8+8x | | n+7.1=8.6 | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)+11pq-p^2+q | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)+10pq-p^2 | | ((-2xy^2)-3y)dx+((-2x^2)y-3x)dy=0 | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)+10pq+p^2 | | 13x-8=-31 | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)+pq | | 8xln(x)+x=0 | | 4x-2(x-3)=-7+5x-2 | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)-9pq | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1) | | 4m-2=-16-3 | | 9tan^2(3x)=27 | | -9y+7=24y-2 | | k(1-k)-k(1+k)+(2k+1)-(1-2k)=11k+5 | | 2x^3+6x^2+4x+12=0 | | 7x^2+62=0 | | 12(x+3)=4(2x+8)+4x | | 5(x+4)+4=5x-(4-x) | | X(3X+4)=32 |